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Global Architecture View
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Global Architecture View

Inputs to Detection and Tracking System
TS – Target Strength

mean TS level
as a function of the bistatic angles for appropriate frequency band

characterization of variability (i.e. ping-to-ping fluctuation) 
characterization of uncertainty (in mean levels)

SL / RL / TL – Source Level, Reverberation, and Transmission Loss
mean RL/TL curve(s)

(one or more) averaged over processes whose characteristic time-scale is < operation 
duration (e.g. internal waves, stochastic processes)

characterization of variability (i.e. ping-to-ping fluctuation)
due to processes whose characteristic time-scale is < operation duration**

characterization of uncertainty (in mean levels)
from processes whose time-scale is > operation duration (e.g. SSP, bottom type)

NL / DT

Sensor Measurements

* assumes range dependent environment
** currently reduced to Gaussian independent of state, but this is not a fundamental limitation of the tracker
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Likelihood Ratio Detection and Tracking 

Tracking
Assumes target is present
Uses only sensor responses that are above threshold 
Uses these responses to estimate state of target

Likelihood Ratio Detection and Tracking (LRT)
Does not assume target present
Uses below threshold sensor responses
Determines 

Whether target present 
Target state if present

Bayesian form of Track-Before-Detect (TBD)
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Mathematical Formalism for LRT

Same as Bayesian tracking except
We extend the state space S by adding the null state     to 
represent the possibility that no target is present in the area of 
interest. 

We let be this extended state space.
We assume there is at most one target in the region so 
that

We define the cumulative likelihood ratio as
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Mathematical Formalism Continued

Measurement likelihood ratio for the observation

This is the ratio of the likelihood of obtaining the 
observation             given target present at s to the 
likelihood of obtaining the observation given no target 
present.
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Simplified Likelihood Ratio Recursion 
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LRT Implementation Schematic
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Velocity Sheet Example
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Goals and Approach

Goals
Show that detailed performance prediction aides 
likelihood ratio tracking
Demonstrate robustness in presence of large 
environmental uncertainty

Approach
Add detailed detection model to LRT 
Add environmental uncertainty to LRT state space
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Description of Application Problem

Multi-static Active Systems

hydrophones dispersed
target reflects blast wavefront 
reflection detected by 
hydrophone receivers (human 
or DSP algorithms)
time of detection forms an 
ellipse of possible locations
false alarms, clutter obscure 
target detections

Measurement: series of echo times 1 2( , ,..., )ny y yy =
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Description of Application Problem

Modeling Signal Excess
Signal Excess Model (Mean Level)

1 2 ( )SE SL TL TL TS RL NL DT= − − + − + −
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Description of Application Problem

Variability and Uncertainty
Ocean Processes

Signal Excess Model
Long* Time Scale

• internal waves
• turbulence
• other stochastic

Short Time Scale

1 2 ( )SE SL TL TL TS RL NL DT= − − + − + −
• uncertain SSP
• uncertain bottom
• other unknowns

( )2 where 0, SESE SE Nd x x s= - + :

Ping-to-Ping Fluctuations**
“Variability”

Model Mismatch
“Uncertainty”

Signal Excess Uncertainty and Variability

* compared to operation timescale, O(1 hour)
** Gaussian approximation shown here
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Description of Application Problem

Using SE in LRT
IASW Approach
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Description of Application Problem

Environmental Dimension
Environmental Performance Prediction Approach
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“Delta” Discretization of Environmental Dimension
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Monte Carlo Simulated Example (East China Sea)

Example: Improvement due to good detection 
modeling

Simulation Parameters
RL / TL (Reverb / Loss)

in situ SSP used
750 Hz / 500 Hz band
Fulford Bottom Loss

TS: BASIS Bistatic Diesel Model

Variability: 8 dB (Gaussian)
Exercise Parameters

90 sec dwell time
avg of 20 false alarms / ping / buoy
blast order randomized

Tracker Parameters
RL / TL

MODAS SSP used
750 Hz / 500 Hz band
Fulford Bottom Loss

TS: BASIS Bistatic Diesel Model

Uncertainty: -5 dB to 5 dB
Variability: 8 dB (Gaussian)

~70 km

4 m/s

32 sonobuoys
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Monte Carlo Simulated Example (East China Sea)

Results: Cumulative Likelihood Example
Video
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Monte Carlo Simulated Example (East China Sea)

Results: Cumulative Likelihood Histograms 
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Simulated Example (East China Sea)

Example: Robustness to high Uncertainty
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Simulated Example (East China Sea)

Results (High Environmental Uncertainty)
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Simulated Example (East China Sea)

Results (High Environmental Uncertainty)
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Conclusions

Use of performance prediction improves tracker performance 
compared to IASW measurement likelihood ratio function.

Accounting for environmental uncertainty allows LRT to track in 
cases of large performance prediction uncertainty.

Publications
“Effect of Environmental Prediction Uncertainty on Target Detection 
and Tracking” by L. D. Stone and Bryan R. Osborn, Proceedings of 
SPIE conference on Defense and Security, April 2004
This work will appear in the JUA issue on Sensor Performance 
Prediction Analysis


